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Regge Trajectories for Yukawa Potentials*
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Regge trajectories for attractive and repulsive Yukawa potentials are investigated. Certain analytic rela-
tions satisfied by the trajectories are derived. Results obtained by an IBM-7090 computer program are
given in the form of 6gures.

' ~N a previous paper' we presented some preliminary
- " results concerning poles of the scattering amplitude
in the complex angular momentum plane. We gave
partial descriptions of the trajectories of the poles for
an attractive Yukawa potential. In the present paper
we extend this work, and we also consider a repulsive
potential and comment on the effect of a hard core
which dominates the centrifugal barrier at the origin.
In the case of potentials that can be represented by a
superposition of Vukawa potentials, we derive certain
relations between the energy at which a Regge curve
can cross the real / axis and the potential strength.
These crossing points are shown to be indeterminacy
points in the S matrix, which play a vital role in the
behavior of the Regge trajectories in the left-hand X

plane (where X=lj,')—
We consider the Schrodinger equation

subject to the following three conditions:

(I) V(r) = dp ~(I )e ~"/r,
&0

d& & I
V (pe")

I
& ",«I all

I
~

I
&Iri2,

(iii) rV(r) regular at r=0.

Under these conditions the S matrix is meromorphic in
the full l plane and in the k plane cut along the imagi-
nary k axis.

We consider potentials that can be represented by
superpositions of Yukawas:

rV(r)= a(p)e &"dr, iIp)0,

d2 l (k+1)—+O' —V(r)—
dr'

uI(r) =0, where we assume

whose solution NI(r) satisfies the boundary conditions
o (p)p"de, &E for all e.

N((r) = r'+' We can then make the expansion

NI(r) —e ikr S($ k)e
—IwleIkr— r V (r) k'r = P n r—~

n=p
(6)

The S matrix can then be written in the form

(u'+sku)e '""
S(L,k) =

" " (u' —sku)e'""

The meromorphy of S(l,k) has been investigated by
Boltino et al.' and Squires, ' with the potential V(r)

2.5I
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A =0.05
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~ This work was done under the auspices of the U. S. Atomic
Energy Commission.

f Present address: Atomic Energy Research Establishment,
Harwell, England.

' A. Ahmadzadeh, P. G. Burke, and C. Tate, Lawrence Radia-
tion Laboratory Report UCRL-10140, 1962 (unpublished). See
also C. Lovelace and D. Masson, Nuovo Cimento 26, 472 (1962).' A. Bottino, A. M. Longoni, and T. Regge, Nuovo Cimento 23,
954 (1962).

' E. J. Squires, Nuovo Cimento 25, 242 (1962).

FIG. 1. l-plane plots of the 6rst six Regge trajectories for the
potential strength g =0,05, So~g P yalgep pre wriggp adjacen&
to the curves.
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10 ero, Phys. Rcv. 128, 1383 (1962).4 A. 0. Barut and F. Calogero, Phys, ev.



REGGE TRAJECTORIES FOR YUKAWA POTENTIALS 1317

We include in the second term of (11) those terms
(and only those terms) of ('7) which have a pole at l = lo.
The rest are included in the first term of (11).We note
now that the b„and the c„are regular in the neighbor-
hood of /=lp.

The condition for a pole in the S matrix, given by (9),
now becomes

I.O

1
(ui' —ikui)+ (u2' —sku2) =0,l-l. ' (12)
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FIG. 8. The first Regge curve for several potential strengths.
The k' values are written adjacent to the curves, (When k' is
negative, some of these values are shown displaced from the real
axis for the sake of clarity. )
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FIG. 6. Ren versus k' for curve 2.
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points at the values of k' satisfying (13).Writing (13)
explicitly at the points ——,', —2, ——,', we obtain

np' —0.~=0, for Ep= —2,'

no' 4noni—+4n2=0, for lo= —2; (14)

where we have written N~ and N2 for the first and second
terms in (11), respectively. If (u&' iku&)—~(l—lo) as l

approaches lo, then (12) can obviously be satisfied. This
is a condition on k' through expansion (6), and the S
matrix can be made to take any value by altering the
proportionality constant. In the limit l= lp our condition
obviously reduces to

—2Lp—2

&—2lp—1 P n„a g(, g
——0. (13)

2 (2lp —1)

no' —10no'ni+24non2+9ni2 —36n, =0, for lo
———2.

As an example, let us consider the potential
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This can be satisfied at the points where there are at
least two terms in the summation (13).If no is nonzero,
this means that lp= —-'„—2, ——,', are indeterminacy
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FIG. 9. Ren versus k' for curve 1 when k' is positive,
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V(r) = Ae "/r —Then th.ese relations become

k'+A' —A =0,
~p= —-'3.

2 l

4k'+A' —4A+2=0,
lp ———2; (15)

9k'+ (10A'—18A)k'+A' —10A'+21A' —6A =0,
lp

5

Fxo. 7. Imo. versus k' for curve 2.
These equations are necessary and sufFicient conditions
that Regge curves should cross the axis at the energies
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Coulomb case at the negative intege rs b the first few
curves cross the real? axis at the first possible negative

limit A —+ 0 it appears that this feature is shared by all
curves except the first. The first curve always extends
to th right of?= —-' for k'=0. We, thus, find the point
?= ——,'an accumulation point for an infinite number of
zero-energy po es o1 for all A positive and negative.
Figures 2 and 3 show the? plane for A = 2 and A =
respective y. is see1 . It '

en that as A is increased, further
zero-energy po es moles move along the real? axis from —~
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Fzo. 10. Imn versus k' for curve 1 when k' is positive.

iven b their solution. The first equation in (15) states
that a Regge curve must cross the real? a

'

k' real and positive when A lies between 0 a0 and 1. For
A&1 the curve must pass through this point at a
negative va ue o; i1 f k' i.e. on its path along the real?
axis. Many such statements can be made on the basis
o qs. . n(15). &n particular it can be shown that or
sma, egge c11 A Re e curves cross the axis at a nite va

zero at theof k' (which approaches zero as A goes to zero) a
poln s —2,
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and:..become associated with each Regge curve in turn.
The transition from one curve to another is shown for
one case in Fig. 4. In Fig. 5 we show the position of some
zero-e-energy poles as a function of A. T e vertica ine
at Re?= ——' represents an infinite number o po2

As A is increased, the second zero-energy pole becomes
associated with the second Regge curve at? = —~, t e
third with the third curve at? = —2, and the fourth with
the fourth curve at? = ——,', etc. These relations can a so

ultimate zero-energy pole it can no longer cross the axis
and is constrained to move into the right-half? plane
with Im? always positive. Both the transition shown in
Fig. 4 and the existence of quadratic and higher order
equations in k' in (15) show that double poles in the S
matrix can and do occur. We must, consequently, e

' . 1).Al sA —& ~ Eqs. (15) givethestandard
Coulomb behavior e

~

k
~

=A for a pole returning to t e
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given by lo —m+ (A/n——

~
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points, but they now satisfy /0 ~&
——,'. In general,

increasing the dominant power of r in the potential for
small r pushes to the left the first indeterminacy point
of the S matrix in the complex / plane. This seems to ht
in with Bethe's' result that the high-energy limits of
the Regge trajectories are also pushed to the left in this
case.

The foregoing analysis shows that Regge trajectories
in the left-half ) plane have an exceedingly complicated
behavior due to the appearance of certain indeterminacy
points. An interesting fact pointed out by Predazzi and
Regge' is that a repulsive core, whose strength is
sufficient to dominate the centrifugal barrier at r=0,
causes the following symmetry in the S matrix:

FrG, 14. The fIrst two Regge curves for the repulsive
Vukawa potential A = —5 and for k' positive.

cautious in applying Taylor's5 proof of the analyticity
sf n(k') and P(k')e ' " & in the k2 plane. In fact, certain
extra branch cuts may appear. Such eGects are apparent
for all Regge curves except the first, when A becomes
ouKciently large and positive (Figs. 6 and 7). Figure 8
shows the first Regge curve for several values of A,
and Figs. 9, 10, and 11 give the real and imaginary
parts of this trajectory plotted against k'.

In Figs. 12 and 13 we plot the real and imaginary
parts of P(k')e ' &~ & for curve 1. This is a real analytic
function with no left-hand cut, and it appears from our
results that it satisfies a usual type of dispersion rela-
tion. Figure 14 gives the first two Regge curves for the
repulsive potential 5e "/r It is int.eresting to note that
both curves go to the point /= —

~ as k' —+ 0. Equations
(15) show that no curve can pass through the points
/= —~, —2, ——,

' for A(0and k'&0. It maybe true that
for A (0 and k'& 0 no curve can cross the axis and that
all must go to /= —~, but we have not obtained a general
proof of this.

In concluding this part of the work we remark that
if no=0 in expansion (6) we still get indeterminacy

5 J. R. Taylor, Phys. Rev. 127, 2257 (1962).

S('A, k) =S(—X,k)e" ". (16)

In that case the left-half X plane is no longer interesting.
We investigated the effect of adding such a repulsive
core to the single Vukawa. We considered

5g T

4

and took both p=0 and p=1. In both cases the Regge
trajectories appear to be unbounded as k' —+ ~. Ke
followed several trajectories up to an energy of about
k'= 50 and found that both real and imaginary parts of
P were still increasing.

We regard this as an indication that a hard core of
the type (17) is unphysical. It may in fact be necessary
to take seriously the investigation of Regge trajectories
in the left-half ) plane.

We are greatly indebted to Professor G. F. Chew and
other members of the Physics Department of the
Lawrence Radiation Laboratory for advice and en-
couragernent in this work. We are also grateful to the
staff of the computing center at the Laboratory for the
use of their facilities.

' H. A. Bethe and T. Kinoshita, Phys. Rev. 128, 1418 (1962).' E. Predazzi and T. Regge, Nuovo Cimento 24, 518 (1962).


